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Abstract 
During  the  Global  Rain Forest Mapping  (GRFM) project, JERS-1 SAR  (Synthetic 
Aperture  Radar)  satellite  was  used to map  the  humid  tropical forests of  the world. The 
rationale for the  project  was  to  demonstrate  the  application  of  the spacebome L-band radar 
in  tropical forest studies. In  particular, the  use  of  data for mapping  land cover types, 
estimating the  area  of floodplains, and  monitoring  deforestation and forest regeneration 
were of primary importance. In  this paper, we  examine  the  information  content of  the 
JERS-1 SAR  data for mapping  land cover types  in the Amazon basin. More  than 1500 
high  resolution (12.5 m pixel spacing) images  during  the  low flood period of  the  Amazon 
river  were  mosaicked  to a seamless 100 m resolution  image over the  entire basin, covering 
an  area  of  about 8 million  km'.  This  image  was  used  in a classifier to  generate a 1 km 
resolution  land cover map. The  inputs to  the classifier  were lkm resolution mean 
backscatter  and  seven  first  order  texture  measures  derived  from  the 100 m data by  using a 
10 x 10 independent  sampling window. The  classification  approach  included  two 
interdependent  stages: 1) a supervised  maximum a posteriori Baysian  approach  to  classify 
the  mean  backscatter  image  into 5 general  land  cover  categories of forest, savanna, swamp, 
white sand, and  anthropogenic  vegetation classes, and 2) a texture  measure  decision  rule 
approach  to further discriminate  subcategory classes based  on  taxonomic  information  and 
biomass levels. 
The  general  category  and  the  subcategory classes were  identified  from the 
RADAMBRASIL  Project 1: 1,000,000 vegetation  map  and  several field studies. For each 
class 10 sites were  chosen for training  and  validation of  the classifier. After  several 
iterations  and  combining  land  cover  maps,  14 classes were successfully separated  at lkm 
scale. The results were  verified by examining  the  accuracy  of  the  approach  using  the 
validation  test sites, and  comparison with the RADAM and  the  AVHRR  based 1 km 
resolution  land cover maps. 
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1. Introduction 

In recent years, several  interdisciplinary studies within the  international  scientific 
communities have focused on understanding the processes of  land cover and  land  use 
change in the  tropical  rainforests  and  the subsequent effects on  the  earth atmosphere. 
Tropical forests, because of  the  large  area  of  land surface they cover (about 1600 million 
hectares  at  the  climatic  climax),  their  humid  climate  (rainfall of above 2000 rn per year), 
and  being  the  most  luxuriant  and  species-rich forests, are responsible for the  major 
proportion of  the earth's biological productivity. A large  part  of  the  tropical rainforests in 
the  world  is  undergoing extensive land  transformation  as a result of population growth and 
economic  development  and pressures. Such changes directly  influence  the processes that 
govern  the  interaction  of  land surface with  the atmosphere. This represents, for example, 
changes in a vast  intake of  the CO, which  is stored in  the  tree tissue and thus the  carbon 
cycling, changes in  the  hydrological processes and  their  influence  in fluxes of wafer and 
trace gasses, the  geomorphology of river  basins,  and changes in biodiversity and  habitat of 
endemic species (Myers, 1988; Myers, 1992; Houghton, 1995): 

Understanding  the  human or climate  induced  changes of tropical  landscape  requires 
a basic  knowledge of  the  current  status  of  the ecosystem, the  area  and  the  type of  the  land 
cover  susceptible  to changes, and  the causes and  impacts of these changes. Recent 
advances in remote sensing technologies  have  partially  contributed in documenting  and 
monitoring  these  changes (INPE, 1992; Skole and Tucker, 1993). However, there  are 
several  unresolved  problems  associated  with  mapping the  land  cover  types  and  monitoring 
the tropics  on  regional  and  continental scales. These  problems  are  primarily  associated 
with  the  limitation of current  remote  sensing  techniques  and  the  methodologies  used in both 
defining  the  land cover types  and  identifying the parameters  to  be  monitored. 

Optical  remote  sensing  has  been  used for classification of  land cover types  and the 
study of changes on local to  regional scale. High  resolution (30 m) Landsat  Thematic 
Mapper  (TM)  data  has  been  the  primary source for estimating the  rate  of  deforestation  by 
INPE (Instituto Nacional  de  Pesquisas Espaciais) and  Landsat  Pathfinder  Program (INPE, 
1992; Skole and Tucker, 1993; Justice and Thownshend, 1994). These studies have  used 
visual  interpretation  and  classification  as  their  primary  approach for extracting  thematic 
information. Most  large  scale  maps  derived  from  these studies have  limited  land  cover 
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types. This is primarily  due  to  difficulties in interpreting  the  spectral  information in 
Landsat  data  acquired  at  different  years or seasons. 

Coarse  resolution ( 1 . 1  km) NOAA  AVHRR  (Advanced  Very  High  Resolution 
Radiometer)  provides  global  observation  at  high  temporal  sampling  and  can be  used for 
large  scale  mapping  and  monitoring  (Tucker  et al., 1985;  Stone  et al., 1994; Thownshend 
and Justice, 1988; DeFries and Thownshend, 1994). The AVHRR data  have  been  used in 
different ways. Among  them  the  multitemporal  derived NDVI (Normalized  Difference 
Vegetation  Index)  from  Global  Area  Coverage  (GAC)  data is the most  reliable  data  set for 
land cover classification. The  classification of this  data  set  has  been  performed  on a global 
scale  and  thus  with  limited classes over  the  tropical  region  (DeFries  and Thownshend, 
1994; DeFries  et al., 1998). In addition, few continental  scale products have  been 
produced  from GAC data over South America  and  Africa (Thownshend et al., 1987; 
Tucker  et al., 1985; Malingreau  et al., 1995) respectively. Recently, a combination  of 
AVHRR LAC  (Local  Area  Coverage)  at 1 km and  the  AVHRR GVI (Global  Vegetation 
Index) data  at 15-25 km resolution  have  been  used  to  produce a more  detailed  vegetation 
map of South America  (Stone et al., 1994). 

Microwave sensors, such as radar, in large, have  remained unexploited. The 
reasons  are  varied,  and  at  times controversial, depending  on  the application. Nevertheless, 
the reasons can  be found in: 1) lack of long  term  availability of data from spaceborne or 
airborne  radar systems over a large  area  of  tropical forests, 2) lack of appropriate  bands 
and  polarization  channels  on  current  spaceborne systems, 3) the  difficulty  in  interpreting 
radar  backscatter  data  as  compared  to  photo or optical  spectral characteristics, and  4) the 
tradition  in  geography  and  earth  science  disciplines for the  use  of  optical  remote  sensing 
data  versus  military  and  engineering  community for the  use  of radar data. 

During the  past  decade,  several  radar sensors have  been  deployed  in  space  such  as 
the  shuttle  imaging  radar (SIR-A, SIR-B, and SIR-C/X-SAR), ERS-1,2, JERS-1, and 
Radarsat. Except  the SIR-C/X-SAR system, all  radar sensors have  only  one  channel. 
Though  none  were  designed  specifically for land cover mapping, several  investigations 
have  demonstrated  that  the  data  provides  unique  information  about  the  characteristics of  the 
tropical  landscapes (Sader, 1987;  Foody  and Curran, 1994). First, the  radar  data  can be 
acquired  as  frequently as possible  due  to  insensitivity to atmospheric  condition  and sun 
angle. This will allow  continental  scale  high  resolution  data for systematic  assessment of 
deforestation  and  regrowth processes. Second, depending on  the wavelength, the  radar 
backscatter  signal  carries  information  about  the  forest  structure  and  moisture  condition by 
penetrating  into  the  forest canopy. Few studies have  addressed  these  characteristics by 
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using  the  radar  data for mapping  tropical  land  cover  and  estimating  the  biomass of 
regenerating  forests  (Foody  and  Curran  1994;  Luckman et al., 1997;  Saatchi  et a l . ,  1997; 
Rignot et al . ,  1997). 

In  this paper, we demonstrate the  use  of  the JERS-I SAR  data for mapping  land 
cover  types over the  Amazon basin.  The JERS-1 data  were  acquired during the  GRFM 
(Global  Rain Forest Mapping)  project in 1995 and  1996 in order to assess the  use  of  the 
data for mapping  and  monitoring  tropical landscape. To make  the results compatible with 
the  ongoing  large scale mapping  projects  with  optical sensors, we created a one kilometer 
resolution JERS-1 mosaic  derived  from  resampling  higher  resolution  images (12.5 m pixel 
spacing). In section 1, we discuss the  data  acquisition  and  properties during the  GRFM 
project. In section 2,  we  develop a supervised two  stage  classification  approach  based on 
the backscatter and texture  measures  and a training  data  set  extracted from images over 
several  land cover types. After  determining the types of land covers that  can  be  classified 
with  the lkm mosaic  data, we employ  the classifier to  discriminate  the  landscape classes in 
the  image mosaic. The  resulting  map is compared  with  the RADAM Brazil  derived map 
and  the 1 km AVHRR  classification  (Hansen et al., 1998). These  data sets and  the  ground 
information from several studies are  used  to  determine  the  accuracy  of  the JERS-1 
classification. 

2. JERS-1 SAR Observation 

JERS-1 S A R  is an  L-band  spaceborne S A R  system  launched by the  National Space 
Development Agency of Japan  (NASDA)  in February, 1992. The system operates at  1.275 
GHz  with  horizontal  polarization for both  transmission  and reception. The  spatial 
resolution of  the system is 18 m in  both  azimuth  and  range. The swath width  is 75 km and 
the  incidence  angle  of  radar  at  the  center  of  swath  is 38.5". The single-look images  have 
4.2 m pixel spacing in  azimuth  and 12.5 m in range  and the standard  three  look  image  data 
has  12.5 m pixel spacing in both  azimuth  and  range. JERS-1 covers the  global  land  surface 
for several  applications  such as land survey, agriculture, forestry, fishery, environmental 
protection, disaster prevention  and  coastal  monitoring.  The  satellite flies on sun 
synchronous orbits 568 km above  the  Earth  surface  and with a recurrent  period of 44 days. 
In  late 1995, JERS-I  satellite  entered  into  its  Global  Rain  Forest  Mapping (GRFM) phase 
and  has  been  collecting  high  resolution  SAR  data  over  the  entire  tropical rainforest. In a 
short  period  (approximately 60 days), during the GRFM phase, the  satellite  provided 
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continental  scale  data  over tropics. Because of cloud cover, similar  coverage with high 
resolution  optical  data  such as Landsat  can  only  be  provided  on  annual or decadal  time 
frame (Justice et al., 1997). The JERS-1 coverage of  the  Amazon  basin  is shown in  Figure 
1 .  

3. Image Mosaic 
One  of the main problems in using  high  resolution  imagery  to provide regional or 

continental  scale  maps  is  the  difficulty of mosaicking a large  number  of images. This is 
due  to  inaccurate  orbital  information,  changes in surface feature  between two adjacent  data 
takes,  and  calibration  discrepancies  among  images.  In optical imagery,  to  these problems, 
one  can  add  the changes of sun  angle for each  data take, the  lack  of frequent data  takes  in 
one season, and  thus  spectral changes of landscape. In  the case of JERS-1 images over the 
Amazon basin, these problems  can be  readily  overcome  because 1) all  images  are  taken  in 
two  months  minimizing  changes  in  surface features, 2)  ERS-1 data can be cross calibrated 
to  provide  uniform  calibration  over t i e  entire mosaic, and 3) the  atmospheric  condition 
does  not  affect  the  image  quality. 

In  this study, we  have used 100 m resolution ERS-1. data (8 by 8 averaging of 
high  resolution data) to  generate a map of the entire basin  from 1500 images. The details of 
mosaicking  technique is given  in  Siqueira  et al., (1998). The  technique has been 
developed  on  the  foundation of a mathematical  approach  to  mimic a wallpapering  approach 
by  minimizing  the  propagation of errors. The interscene  overlap  both  in  the  along-track 
and  cross-track directions are  used for individual  scene geolocation. The scenes are  placed 
on a global  coordinate  system  with the  flexibility  of  having scenes floating freely  with 
respect  one  another  until  the  locations of  all scenes are  calculated simultaneously avoiding 
any  directional errors. The  result  is an optimum  seamless mosaic. The geometrical 
accuracy of  the mosaic  is  performed by choosing forty  one  control  points from a Brazilian 
and  Peruvian 1:100,000 scale maps. It  is found that  95% of  the control  points  can be 
located  within  one  pixel (100 m) or less. The  final  mosaic  is  projected in an  equal  area 
projection  which  resulted in resampling of  the  image  to 3 arc second pixel  size 
(approximately 90 meter).  Note that unlike  the  high  resolution  raw images, after  averaging 
and  resampling  the  pixel  spacing  and the ground resolution of  the  final  mosaic  image  are 
approximately  equal  (Figure 2). 

4. Classification Methodology 
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The  coherent  nature of  the  radar  backscatter signal suggests that  the  imaging  radar 
data  contains  two  components:  one  is  the  speckle  which is due to the  scattering  from 
randomly  distributed  scatterers in a pixel, the  other  is  the  texture  resulting from the  spatial 
variability  of  the  scene  illuminated by the radar. The  speckle  often causes uncertainty in 
interpreting the  radar  data but the  texture  helps  identifying  scene  characteristics in images. 
There  are  several  filtering  techniques to reduce  the  speckle in SAR  data  and  meanwhile to 
preserve  the  texture  information.  The discussion on  these  techniques is outside the scope 
of this  paper  (see e.g. Ulaby  et al., 1986). We start our analysis  based  on  the a priori 
knowledge  that  textural  information  enhances  the  capability  of  per-pixel basis classification 
of  SAR data. Textural  information  or  measures  are  extracted from different order image 
histograms by using  various degrees of signal statistics (Ulaby  et al., 1986; Posner, 1993; 
Anys and He, 1995; Soares et al., 1996). 

In classifying the  JERS-1 S A R  data, we develop texture measures based  on  the first 
order histogram  derived in apriori specified  window size. These measures characterize 
the  frequency of occurrence  of  the  grey  level  within  the  window  in  the  single  channel  radar 
data  and  they  depend  on  the  size of the window. In  this study, we  develop  the  texture 
measures  from  the 100 m JERS-1  mosaic over a 10 x 10 window  in order to produce 1 lan 
images. The window is  moved  blockwise  in  the image, reducing  the  resolution  and 
catching  the  signal  statistics up to the  scale of the  window  size (i.e. one kilometer). 

We  understand  that  the choice of a large  window for transforming  100 m resolution 
images  to 1 lan may  reduce the accuracy  of  land cover mapping  by  introducing  mixed 
information  in  large  pixels  and errors in  the  definition of edges of  land parcels. The 
resulting  texture  images  have  independent  pixel information, and are reduced  in  size  by a 
factor of 10  in  each dimension. Note that  the  JERS-1  SAR  image  is  treated as a grey  level 
image as in  any  type of imagery.  However  in  interpreting  the  tonal and texture  variations  in 
the  image  we  use  the  general  characteristics  of S A R  data such as the  penetration  in  the 
vegetation canopy, and sensitivity  to  structure  and  moisture condition. 

4.1. Texture  Measures 

In quantifying the  texture  measures, we  use  the amplitude  mosaic image. The use  of 
amplitude  instead of intensity  helps  separating low  vegetation  and  water classes because of 
the  small  dynamic  range  of JERS-1 data  (approximately  18 dB) and low  signal  to  noise 
ratio.  Local  texture  measures  derived  from the first order histogram of a 10 x 10  window 
are  given  as  follows: 
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where P(i)= N(i)/M, N(i) is number of pixels of same  grey level in window, i is  the  pixel 
grey  level,  and k is  the  maximum  possible  grey  level. 

k-I 

i = O  

The  variance  characterizes  the  way  in  which  values  are  distributed around the mean. It  is 
basically a measure  of  heterogeneity.  Variance  measure  increases  when  there  is  much 
difference  on  gray  level  values  from  their  mean 

k-1 

3) Entropy =-x P( i )  ln[P(i)] 
i = O  

Entropy  is a measure of  the  amount  of disorder in an image. The  greater  the noise on  the 
image, the  higher  the  entropy  values  are. 

k-1 

4) Energy = [ f '<i) l2  
i = O  

Energy  is a measure of  the homogeneity of the  image  (only  similar  grey  levels  are present). 
It can be regarded as the opposite of entropy. When  all  the  grey  level  pixels  within a 
window  are constant then  the energy is  one. 

k-1 

5) Contrast= (imx - i ~ , ,  > ' ~ ( i >  (5) 

Contrast  is the difference  between the highest  and lowest values  in  the window and it 
increases by local  variations of grey  level. 

i = O  

6) Skewness= +[ ( i  - S, l3 P(i) s, i=o 1 
Skewness  characterizes  the  degree of asymmetry of the  distribution of  pixel  values  around 
the  mean. . 

7) Kurtosis= - ( i  - S,)* P(i)  - 3 s; [" ;=o 1 
Kurtosis is a measurement of  the  relative  peakedness or flatness of the  pixel distribution. 
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4.2. Texture  Measure  Selection 

Texture  measures  calculated for classification  are  from the first order histogram, 
they  are  correlated  and do not  contribute  equally  to  discriminating classes. In order to 
evaluate  the  properties  of  textures  and  their  effectiveness in separating classes, we  use a 
figure of merit approach. In this approach, we establish a distance  between  the classes of 
the  image  from a training  data  set in such a way  that a large  distance  implies a better class 
separability  and thus small  classification error. The  distance is a statistical  difference 
between  the  probability  density  functions of two classes i and j, and  are  often  called  the B 
distance  (Bhattacharyya  distance) or Jeffries-Matusia  distance (Swain and King, 1973). 
Assuming  that  the  probability  density functions have  Gaussian distribution, the B distance 
can  be  calculated  as  follows: 

El: covariance matrix of class 1 (dimensionaxn) 

I XI  I: determinant of El 

The  exponential  factor  gives  an  exponentially  decreasing  weight  to  increasing  separations 
between  textural classes. 

Since 0 I e-p I 1 then  the  B-distance  varies  between 0 and 2, with two corresponding to 
the  maximum  separability  between classes. This distance is also directly  related  to  the 
classification error probability in case of a Baysian  classifier  which assumes a Gausian 
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distribution. The  rate of correct  classification, P,,, of B-distance is situated  between (Swain, 
1978): 

In the  following section, the  texture  measures  from  training  areas within the  image 
are extracted  and by using  the B distance  their  relative  contributions for separating  various 
classes in each  land cover category  are discussed. By removing  less  effective  textures for 
the  identification  of  each class, one can  use a smaller  set of input  parameters in the 
classifier. 

4.3 Classifier 
After choosing a list  of  texture measures, we  employ a two  stage  approach to 

perform a supervised classification of  the JERS-1 mosaic. In  the first stage, we  use a 
maximum aposteriori Baysian (MAP) classifier  on  the JERS-1 mean backscatter  image at 
1 km scale for general  categories of  land cover types. The classifier  is  an  extension of 
maximum  likelihood  Baysian  classifiel (MLE). The  detailed  description  of  the  classifier 
can be found elsewhere (Rignot  and  Chellappa, 1993; Saatchi  and Rignot, 1996). This 
classifier  was  originally  developed for polarimetric  SAR data. In our analysis, we  have 
modified  the classifier in order to  accommodate  single  channel JERS-1 data. The JERS-1 
S A R  amplitude  data  are assumed to  have a Gaussian distribution. From modeling  the a 
priori distributions of data and image  classes, a model for the a posteriori distributions of 
image classes are derived using  the  Bayes theorem. In  other words, the MAP classifier 
views  the classes as random  variables  with  some apriori distributions  and  then  revises the 
decision  through  an  iterative  procedure  to  optimize  the  decision  about  the  nature of classes. 

In  the  second stage, the  texture  measures  and  the MAP classified  image  will  be  used 
in a hierarchical  decision  rule  based  algorithm  to  further  discriminate  the  classes  within  each 
general  land  cover category. The decision  rules  are  derived by using  predictor  variables 
obtained from the  multi-dimensional  separability analysis of  the  backscatter  and  texture 
measures for each class type. 

The  learning  procedure for the classifier at  both stages is supervised. The  training 
data  are  extracted  with  the a priori knowledge of  the scene  and  the  land  cover  types  as 
shown in the RADAM map. The data  from  the  training  set will be  used  both for the 
separability  test of class types in each  land cover category  and as supervised  data  set for the 
classifier. In  the following section, we first  test the  separability by using the B distance 
and  then  classify  the  image and analyze the  accuracy  of  the results. 

Note that the  input  texture  images  to  the  classifier  and  the  training  data sets are 
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derived  from  the 100 m JERS-1 using a 10 x 10 window.  The  use  of 100 m backscatter 
image  rather  than  the 1 km images  for  collecting the training data, helps  avoiding mixed 
pixel  information in training  data  set. 

5. Land Cover Types 
The  Amazon  basin  occupies a vast  area  of South  America,  nearly 6,000,000 km2, 

with  more than half  of it in the  Brazilian temtory. The  region is a physiographic  and 
biological  entity  which consists of  large areas of dense  forest  with  high biomass. The 
interior of this region  includes  small or relatively  large nonforest, or forests with  local 
variations in vegetation  and  floristic composition. By  vegetation  types  of  the  Amazon 
basin, we  often  refer  to  physiognomic or landscape  patterns  which  are  practically 
differentiated  and  named by scientists  and  local people. In any land cover classification 
exercise, the  main  objective  is  to  develop  techniques  in  order to map as many  landscape 
patterns and cover types  as possible. 

Four general  categories of land cover types  were  chosen for classification of JERS- 
1 data. Within  each  general category, several  types of landscapes  are  described  and  the 
sensitivity of  the radar  backscatter  and  texture  features  to each.are discussed. In order to 
establish a uniform  and  consistent  definition of land  cover  types  and  vegetation  structure  in 
the  Amazon basin, we  have  consulted  many sources (Prance, 1979, Pires and Prance, 
1981; Sioli, 1984; Richards, 1952). However, we  have chosen  the  classification of 
RADAMBRASIL as a guideline  to  develop  training  areas  and  compare our classification 
result. This will  help  to  avoid  any  diversity in definition  that may exist in  the  literature  and 
at  the  same  time avoids lengthy  description of  the  vegetation  types  which falls outside the 
scope of this  paper. 

The  vegetation  classification of  the RADAMBRASIL project is followed here, as 
presented  in  Veloso et al.  (1991),  excluding  those  vegetation  types  not found in  Amazonia. 
(we refer  to  this  map  as RADAM throughout the paper). Though other  vegetation 
classification systems are  found for the  Amazon in the  literature (e.g., Pires and Prance, 
1981; Prance, 1979), this  system  was  chosen  as it forms the basis of  the most extensive, 
detailed  and  up-to-date  vegetation  mapping  effort of  the  Brazilian  Amazon (Brazil, 1972- 
1982). In addition, the cover  types  can be transformed  or  merged  to  generate  any 
international  land cover classification  legends  such as IGBP  (International Geosphere 
Biosphere Program). 
The RADAM map  layers  have  recently  been  incorporated  into  an  easily  manipulated 
geographic  information  system  available  on CD-ROM (IBGE, 1997), which  facilitates 
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comparison with the  wall-to-wall  L-band  SAR coverage. The  RADAM  maps  for  each 
region of Brazil  were originally  published at I :  1,000,000, however, they  were  digitized 
from  hard  copy  maps to a scale of 1:2,500,000 and  incorporated in a GIS (Geographical 
Information System). Because of this,  some  features  such  as smaller rivers  that  are  visible 
even on 1 km ERS-1 images  are  not  seen in the IBGE (Instituto Brasileiro  de  Geographia 
e Estatistica)  GIS  based  maps.  For  this study, the  reference  vegetation  map  of the Brazilian 
Amazon  basin  is derived by combining the vectors of  the  land cover data  of 
RADAMBRASIL project as shown in figure 3. Table 1 describes the  legend of  the  map 
and  the cover types  used in this study. 

The  map  in figure 3 is  organized  into  five  hierarchical levels. The  user  builds a 
vegetation  description  using  the  Boolean  operator  'lor"  when combining vegetation 
descriptors  available  within a level,  Boolean "and" for descriptors in  different levels. Any 
two or more classes can be further combined by color coding when displayed, independent 
of their level. Keeping  in  mind  that  L-band  radar  will  be  sensitive to vegetation biomass, 
spacing of woody elements, degree of flooding  under  the  canopy and terrain relief, we 
have  constructed a vegetation  map  with  twenty  themes  in six color groups. Within  each 
group the  map  layers are stacked so that classes of lower biomass are on top of classes with 
greater  biomass. The vegetation  groups are described  below: 

5.1 Terra Firme Forests: 
These forests which  are  never  flooded are mapped  here  as three vegetation types on 

landscapes  lower  than 600 m altitude ("lowland" and "submontane" in  the  Veloso 
classification).  All  are  geographically  extensive. 

Dense forests grow  on  well  drained  clay or loam  in areas where there is no shortage 
or excess of water. They receive  more  than 2,200 mm of rain  annually and are very  high  in 
diversity, with 150 to 300 tree  species  in a single  hectare,  which  will  contain 500 to 800 
individual trees. Generally, no single  dominant species is present. The canopy is of 
irregular  height,  generally  varying  from 25 to 45 m, due to  the  different  recovery stages of 
small  treefall  gaps  and  the  presence of occasional  emergent trees. Canopy cover is 
continuous  and  the  forest  floor  is  not  visible in the overflight. Many  small  palms and pole- 
size  trees  are found on  the forest floor, the  latter  often depends on  the  Occurrence of a 
treefall  gap in order to  grow into the  canopy.  The  variability in forest structure and species 
diversity  implies  that  there  is  no  structural  feature  that  can be used in interpreting  the  high 
resolution  SAR data. Biomass  exceeds  the  saturation  point of L-band  SAR (less than 100 
tons/ha). 
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Open  forests are also  known  as  transition  forest,  this  very  extensive physiognomy, 
over  one  million km’ in  the  Brazilian  Amazon according to IBGE (1997), usually  occurs 
where  rainfall is less  than 2,200 m d y r ,  though  some  open  forest with palms  is also found 
in high  rainfall areas of  the  western  Amazon.  Ecotonal  open forests form an east-west 
oriented  band in the  southern  Amazon Basin, sandwiched  between dense forest to  the  north 
and semideciduous dry  forest  to  the south. The number of trees  per  hectare is usually  less 
than 500 and  biomass  is  expected  to be lower  than in the dense forest, though  occasional 
large emergents can keep the biomass  high  (Brown et al., 1995).  Large  emergent  trees  are 
widely spaced, sometimes  giving  the  appearance of a two-story canopy. Shorter canopy 
trees  are also more  widely  spaced than in dense forest  and  large  light gaps are  more 
common. The gaps are almost  always occupied by lianas,  bamboos or palms, or a mixture 
of these. The understory is  clear  except  in  the  frequent gaps, which  are  impenetrable. 
Liana forests very  much  resemble  broken  up dense forests after dsturbance by  logging 
with  heavy machinery, as  the  weight of the lianas topples  many  trees and favors the  growth 
of shorter  pioneer  tree  species in the  large  gaps  that  result.  Extensive  bamboo-dominated 
forests are restricted to 180,000 k m 2  of the southwest Amazon  in  Brazil  and  Peru  and  are 
dominated  by  two species of spiny  Guadua(Ne1son & Irmo, 1998). These form mono- 
dominant stands in  frequent gaps of 30-200 m diameter  and ais0 climb up  the  trees  like 
vines. Periodic synchronous mortality  of  the  bamboos every 30 years  leads  to  temporary 
substitution by pioneer tree  species,  vines  and a thinner  bamboo (taquan’) in  the gaps. Over 
half  of  the open forests (665,000 k m 2  according to IBGE, 1997) have a high  density of 
large palms, which suggests a past  history of fire  penetration,  particularly  when babaqu 
palm (Attaka speciosa) is the  dominant species. In  the  western  to  central Amazon,. m 
poorly  drained inteffluvial pozdols,  one finds an  open forest dominated by the  patau p h  
(Orbignya bataua). These are  the  open  forests of high  rainfall areas, but  even  patau  forests 
are reported to catch fire (Nelson & Irmo, 1998). 

The dry forests are  seasonally deciduous or semideciduous. They  cover 338,000 
km2 of  the Brazilian  Amazon  (IBGE,  1997),  most of which  is in the state of  Mato Grosso, 
occupying a transition  belt  between  open  forest  to the north  and  savanna  to  the south. Dry 
forest also covers the  Cachimbo  plateau  in  southern  Para  and forms a fire-prone transition 
to  savannas in the state of Roraima.  In  Mato Grosso the dry forest is locally called cerrado, 
and  has a clear grassy understory, though  the  canopy  is  closed  as  viewed  from above. 
Biomass, tree  heights  and  species  diversity of woody  elements  are  all  lower  than in the 
open forests. On shallow rocky soils dry forest can  be  completely deciduous, while  on 
deeper  clay  soils  they  are  Semideciduous in the  long  dry season. With increasing  dryness 
this  vegetation grades into  dense  woodland  savanna or ceradao (150,000 km’),  the 
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difference  being  that  the  latter  has a grassy  understory  and  even  lower biomass. This 
vegetation  is  refered  to  as  seasonal  forest in figure 3. 

Montane  Vegetation  is  included  as a catch-all class for all vegetation  located  above 
600 meters  (montane  and high  montane  classes of Veloso  et al, 1991). Montane forests are 
distinguished by their  altitude  and  rocky  soil.  Mountainous  regions occur within  the  basin 
to  the  north  and  at  the  contact with the  Andes  to  the west. In  the  Brazilian  Amazon,  which 
does  not  abut  the  Andes,  montane forests cover 29,000 k m 2  most  of which in western  and 
northern  Roraima  on  drainage  divides with the Orinoco Basin. These forests are  low  in 
biomass. On  the border  between  Roraima  and  Venezuela  they  are  susceptible  to  fire 
penetration.  Montane  forest  on  sandstone  table  mountains  are  called "refugios" in  the 
Veloso/RADAM classification. Montane forests on  granite  hills  under 500 m altitude  are 
scattered  about  the  Guiana  and  Brazilian  shields  where  many  are seasonally dry with  open 
canopies, also susceptible  to fires set by lightning or escaping upslope from burning of 
deforested areas. Along  the  Andean  slope the humidity increases, favoring cloud forests 
with  mosses  and  epiphytes  that  cover  the  underlying rocks on  the forest floor, branches 
and  tree  trunks. A better  map of relief  classes  can  be developed based  on  data from the soil 
section of the IBGE GIs. The  forest  category  used  in  this  study  has four subcategory of 
dense forest, open forest, seasonal forest, and  montane forest. 

5.3 Savannas 
In  the  Amazon  basin,  there are several  open  savanna areas with a variety  of 

vegetation types. Accurate  estimates of  the  area  of savanna versus forest is  not known. 
However,  classification  based  on  remote  sensing  data  can  readily  improve  these estimates. 
Using  the IBGE classification, savanna  and  steppe-savanna  are grouped. Each of  the four - 

biomass  levels  in Table 1 are  shown  separately  and a fifth class of even  higher  biomass has 
been added, which  is  the  area of interdigitized  contact  between savanna and seasonally 
deciduous forest or between savanna and  rainforest. 

Savanna  types in the  Amazon  basin  are  often  categorized  based  on  their  vegetation 
and  soil characteristics. In  this study, the a priori knowledge of  the JERS-1 sensitivity to 
the  low  vegetation  is  the  main  reason for regrouping the savanna  types  into  various  levels 
of  woody biomass. The  non-forested  areas of  the  basin  are  primarily  located in the 
northeastern  part of Marajo  island,  the  Atlantic  coast of Amapa, in  Roraima region, south 
of  Venezuela,  and  northeast  of  Bolivia.  Overall,  almost 3-4% of  the  Brazilian  Amazon 
basin  is covered with terra  firme  savanna. In general,  there  are  two  types of savanna, those 
of  white sand  which is often  called  caatinga  and  campina,  and  those  on areas of  terra  firme 
and  varzea  which  are  on  non  sandy soils. The  first  category  is also considered a 
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transitional  vegetation  type  from forest to non-forest. In our classification, The grassland 
savanna is primarily  open  grassland  without  woody  vegetation with basal  area  of 0-2 m2 
per hectare.  The  parkland  savanna  formations  are  encountered over the entire  Brazilian 
Amazon.  They  are  primarily  covered with grass  and  shrubs with scattered trees. Some of 
the  main  parkland savannas can  be found in the  Marajo island, Pantanal, and the  Banana1 
island. In parkland  savanna type, one  can  often  find  numerous swampy places with 
scattered  buriti  palm (Muuritiuflexuosa). In lower Amazon  and  the  west  part  in Peru there 
are  areas of canarana  (tall grass or false  cane)  floating over water  that  can  create  different 
signature  in JERS-1 imagery. This class is discussed under  floodplain or inundated 
category in the following section. The  open  woodland  savanna  can be found in  Amapa, 
Roriama, Para, and Maranhao. These  are  vegetation  formations  with higher density of 
trees  and palms. The last  type is forested  savanna or Cerradao. This is a transitional 
vegetation  type  with a lower  number of species  and  with  closed canopy. The biomass is 
higher  than  the  open  forest  savanna  and is comprised of deciduous and semi-deciduous 
species. 

5.4 Inundated  Vegetation 
This class includes the seasonally  flooded  vegetation of river floodplains. Muddy 

and  black  water  river  floodplains  (varzea  and  igapu)  are  not  segregated;  rather  there are five 
classes based  on  biomass: (1) herbaceous  annuals  and grasslands, ( 2 )  shrublands, (3) 
buriti  palm (Muuritiuflexuosu) swamps, (4) open canopy, and (5) closed-canopy alluvial 
forests. The first three  vegetation  types  are  considered  primary successional in  the  Veloso 
et al. (1991) classification. The  buriti  palm swamps mapped  by IBGE are  an open 
vegetation  limited to the  upper Guapore River  at  the juncture of Rondonia, Mato Grosso 
and Bolivia. Field  checking in extensive overflights has shown  that  buriti  palm swamps 
are in fact  much  more common, but  are  classified  with  white sand forests or alluvial 
forests. Alluvial forests are  classified by Prance (1979) based  on  chemistry  of  the  waters 
and  the  permanence  of waterlogging. The acidc black  and  the  clear  water  seasonally 
flooded forests are  known  as  igapu,  while  seasonally flooded forests of muddy  neutral-pH 
waters  are called varzea.  Biomass of  both  vegetation  types  varies  as a function of  length  of 
flood season, i.e. position on  the inundated slope. In  the  middle  Amazon  region  vatzea 
forests  grade into grassland as one  moves downslope, but  this  is  not  the  case in the  upper 
Amazon,  where the lowest  varzea  vegetation is an open viny forest called  chavascal or 
occasionally a low  shrubland with smooth canopy. Igapu forests never  grade  into 
grassland downslope, but  trees  become  more  widely spaced and shorter. Igapu forests are 
susceptible to burning in the  low  water season if their  soils  are sandy. Small  burned 
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patches with standing  dead  trees  over  water may be distinguishable with radar. This is 
certainly  the  case  for  standing  dead  trees in two  shallow  hydro  reservoirs:  Balbina 150 km 
north  of Manaus and Samuel, just east of Port0 Velho. 

Various  types  of  large grasses which  are  generally  called  canarana  can  be  found 
near  the  varzea forests over and  around lakes. These  areas  often  show up  very bright in 
JERS-1 images during the  wet season  and  can be easily  confused with inundated forests. 
These  types of savanna  often  occur in the  lower  part  of  the  Amazon  between  the  mouth of 
Xingu  river  and  the  Amazon river. They  can  also be found in some regions of Peru, 
Bolivia, and  Columbia  with  slightly  different species. In  some regions of  inundated 
savanna, because  of  the  fertile  soil  and  annual  renewed sediments, these areas have 
potential for cultivation  and  plantations. 

Primary successional formations  on  landscapes  under  fluvio-marine  influence  are 
also considered  inundated  vegetation  types here. Two classes are shown in  the RADAM 
map  in figure 3: (1)herbaceous communities  (salt  marshes  and  dune  vegetation)  and (2) 
tidal flood forests, including mangrove swamps. Due  to  differences  in biomass, structure 
and  canopy smoothness, radar may separate  mangrove forest from other coastal forests, 
but  these are not  available  as  separate  vegetation  types  in  the GIs. 

Mangroves occur in  estuarine  region of  Ammonia  in  areas  which  are flooded h l y  
by  brackish water. The  formation of mangrove is well known. The  vegetation  structure 
type is very uniform, and often dense. The  areas  near  the  mouth of  the river and in  the 
coast of Marajo  island  extending  to  coast of Guiana  are  full of red  mangrove  (Rhizophora 
mangle), the  most  typical  species of the  Brazilian mangrove. The homogeneity of 
vegetation  and  almost  all  year  long  water  underlying  trees  makes  them  to  appear  with 
different  textural features than  the  terra firme forests  and  other  inundated forest types. The 
areas  that  are  covered by mangrove  along  the  coast  are  small  and may not ever show  up in 
the 1 km JERS-1 data. Based on  the a priori  knowledge of JERS-1 data, we have  chosen 7 
class types of inundated  vegetation: 1) herbaceous  (including  coastal communities), 2) 
shrubland, 3) open forest, 4) closed forest, 5) palm swamp, 6) canarana, and 7) 
mangrove. 

5.5 White sand vegetation 
Four biomass classes are mapped,  as  listed in table 1 and  shown in figure 3. The 

two  more  open  formations(campina  and  campina shrubland) are  very  extensive in 
inteffluvial  areas  inland  from  the shores of  the  middle Rio  Negro  and the lower Rio 
Branco. Outliers are  found in the  southwest  Amazon just north  of  the  town  of Cruzeiro do 
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SUI, where  they  show  clearly in the lOOm resolution  L-band SAR. Tall closed  canopy 
forest on  white sand (caatinga or campinarana) is also associated with poorly  drained 
interfluvial  areas with tabular or weakly  incised  relief,  common in  the northwest  Amazon. 
Number of trees  per  hectare (( 10 cm DBH) can  exceed 1000 individuals  and  canopy  height 
is 15-25 meters.  Most  tree crowns are small, leading  to a fine-grain  texture in stereo  air 
photos. In  optical  images  campinarana  forest shows a slightly  lower NDVI and  higher 
shade content of  the pixel, than dense forest. Campinarana  grades into an  open  woody 
formation  interspersed with bare sand, a vegetation  resembling  that found on  coastal  dunes. 
The  fourth class is the  interdigitized  contact  zone of  any  white sand formation  with  terra 
firme forest  on  clay soil. 

5.6 Anthropogenic vegetation 
Anthropogenic  vegetation  refers  to  vegetation  formations  resulted from forest 

conversion  by  human disturbance. According  to  Veloso  (1991) and IBGE classification 
there  are four types:  secondary  successional  stages, agriculture, pasture and tree  plantation. 
In  this study, we  will focus on the secondary forests because of their  importance  and 
abundance  in  the  basin  and  low  vegetated  nonforest  lands  such as pasture and some crops. 
Other  vegetation  types  such  as crops, and  plantations  are  either  not  recognized  in lkm 
JERS-1 classification or mixed  with  one  of  the  above classes. 

The  areas  mapped by IBGE as  secondary  vegetation  cover 98,000 km2, mostly 
located  in  two  very  old  agricultural  frontiers:  the  Bragantina  Zone east of  Belem  and  the 
open  babacu  palm stands of Maranhao.  The map does not  show  all secondary forests. 
Fearnside (1996)  estimated  that  secondary  forests  covered 47.6% of the deforested part  of 
the  Amazon in 1990 but  had  an  average  age  of less than  10 years. As  of 1994 the 
deforested  Brazilian Amazon  exceeded 500,000 km2, according to an  unpublished  study 
undertaken  by  the  National Space Research  Institute (INPE) and  released  to the press in 
1997. Twelve-year-old  secondary forests 90 km north of Manaus, with  above ground 
biomass  exceeding 100 tons, are  clearly  distinguishable by their lower backscatter in the 
JERS-1 100 m data. 

6. Results and Discussion 
Before classifying the image, the  separability of land cover classes for each 

category of forest, savanna, inundated  vegetation,  and  white sand vegetation  using all 
combination of textures  is  computed.  The  anthropogenic classes of secondary forests and 
nonforest  are  mixed with forest  and  savanna  categories  respectively.  During  this process, 
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the  number  of textures  and  separable classes are  optimized  for  final  classification . The 
separability  is  computed  using  the  B-distance  as  the  number  and  combination  of  texture 
measures change. The  separability  is  measured  relatively  between 0 and 2 with 0 
corresponding to no separability  and 2 to maximum separability. 

To make  the  selection  of  training areas as accurate as possible, we registered the 
RADAM map with the JERS-1 mosaic  and  extracted  the  backscatter and texture  measures 
for  each  class  as  indicated on  the map.  During  the  selection of training areas, we  avoided 
those  cases  where the RADAM  class  types  did  not  match  with  the  general  characteristics of 
the  radar  image  suggesting  the  possible  misclassification of RADAM map. Furthermore, 
the  water class was  not  included in our analysis. Nevertheless, this class was separated 
from  savanna  and  pasture  land covers by thresholding the backscatter and the  variance. 

6.1.a Forest 
Table 2.a shows the  backscatter  amplitude  and  texture characteristics for forest class 

types  averaged over 10 training sites. We have  included secondary forests among  forest 
types  because of the  high  probability 01 being confused as forests in JERS-1 data. Among 
forest classes, the  amplitude in byte  (between 0 to  256  gray  values)  and/or  backscattering 
coefficient  in dB alone are not  sufficient  to  separate  the  forest types. The  mean  backscatter 
may separate dense forest from some  secondary or open forests, however the  total 
separability  does  not exceed 0.8. This confirms  previous results obtained from the  analysis 
of SIR-C (Shuttle Imaging Radar C) over  tropical forests(Saatchi et al., 1997; Rignot et al., 
1997). As  the  density of forest changes  from dense to secondary and open forests, the 
variance  and  texture  diverge, and thus  contributing  to  the discrimination. Montane forests 
have  higher  variance, contrast, and entropy  than other classes. Seasonal forests (deciduous 
and  semi-deciduous),  not  having  any  specific  structural  information  in SAR data  have  less 
discriminating  texture  information  and therefore, higher  probability of being confused as 
other forest classes such as dense, open, or secondary forest. 

By adding  various textures, the  separability  increases till it maximizes by  using all 
measurements.  Table 2b. shows the B-distance  computed  using  data from training sites. 
The  results  provide an  indication  of  the performance of  all textures in separating  forest 
classes (average  separability of 1.954). A dimensional analysis of all measures, not shown 
here  because of space consideration, indicates  that  mean,  texture  (coefficient  of  variation), 
and  variance  are  the  most  important  predictor  variables for discriminating forest classes. 

6.1.b Inundated Vegetation 

17 



Inundated  vegetation  types  have a very  distinct  characteristic in JERS-1 images. 
This is  primarily  due  to  the  high  backscatter as a result  of  penetration in the forest  canopy 
and  double  bounce  reflection  from  the  underlying  water or moist surface. However, as 
inundated  vegetation  vary in type,  structural  characteristics,.  and the seasonality of  the  water 
level,  the  radar  backscatter  alone  is  not  able to  discriminate class types. Furthermore, the 
JERS-1 images  are  acquired during the  low  water  of  the  Amazon river  when  most 
seasonally  inundated  vegetation  along  the  Amazon  river  and  its  tributaries  have low water. 
In this condition, only  those forest types  that  differ in structure from their surrounding 
forests  can be discriminated in texture  measurements.  Table  3a shows the  backscatter  and 
texture characteristics of seven different classes in this  category. The low  mean  backscatter 
of herbaceous  and shrubland types  are  because of either  low  water  condition or low 
vegetation  and thus small  double  bounce or volume  scattering respectively. The B- 
distance  computed for mean backscatter is about 1.5, indicating  the  high  performance of 
backscatter in discriminating  inundated  vegetation. 

Table 3b shows the  B-distance  computed  when all texture  features  are used. The 
average  separability  is 1.847 implying the increasing  contribution of  textures in 
discriminating classes in  this category. The results indicate  that  most classes are  easily 
separated  and the confusion is  only  significant  when  discriminating  herbaceous  from 
shrublands and  open from closed and palm  types.  Note  that  the canarana class  type  in  Peru 
is not  in  the RADAM map of Brazilian  Amazon  and  has  been  extracted  from  our  knowledge 
of  the area. 

6.l.c Savanna 
The  characteristics of savanna class types  and  deforested  pasture or crops are 

shown  in  table  4a. Since savanna class types are selected  in  increasing  amount of woody 
biomass,  the  mean  backscatter appears to  be  the  best  channel to separate  them.  The  average 
B-distance  computed for the  mean  backscatter  is 1.7, implying a high  performance in 
discriminating  the classes. The separability  between  deforested and water  with  the 
grassland savanna is 1.2  and 1.4 respectively. The  limited  dynamic  range  of  JERS-1  data 
(18 dB) and  the  insensitivity of L-band data  to short vegetation  and  small  roughness  cause 
these classes have  low  backscatter. By adding  the  texture  measures in the  computation, the 
separability  improves  and  approaches  the  average  value of 1.898. Texture  measures  carry 
information  about  the  inhomogeneity of grassland savanna, the homogeneous  smooth 
water surface, and  the  geometric  and  edge effects of deforested  land  use  that may not 
appear in backscatter  data.  However,  including  texture  measures  indicate  that the grassland 
savanna  still  has a high  probability of being  confused with deforested landscapes. The 
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mixed  savanna  and  dense  woody  savanna  have  similar  structural  characteristics  and  are  not 
easily  discriminated. 

6.1.d White Sand  Vegetation 
Most  white sand vegetation  have  similar  backscatter  characteristics as the savanna 

vegetation.  The four classes are  also  based  on  biomass  formation  and  tree densities. 
According  to  table 5a, the  mean  backscatter  is  the strongest discriminating  measure for 
grassland, open and closed  campinaranas.  The  mixed  campinarana appears more 
homogenous in JERS-1 texture  measures with lower variance  and contrast but similar 
backscatter  as  closed  campinarana.  The  B-distance in table 5b shows that  by using all 
texture  measures,  the  possibility of separating  all classes of  white sand vegetation  is  high 
(average  B-distance of 1.83). 

The  B-distance  test for class separability for each  individual  category  demonstrated 
the  performance  of  texture  measures in discriminating  various class types. The 
dimensional  analysis by adding  texture  measures  and  changing  the  combinations shows 
that a maximum  separability is achieved by only a subset of  texture measures. Figure 4 
demonstrates  this for four categories of land cover types and when  all classes are  used in 
the  calculation of B-distance. The  first  measure  in  each  category  is  the  mean  backscatter, 
however,  the  additional  combination of measures  may differ for each category. By using, 
the  average  B-distance for the  mean  backscatter  (approximately 1.5) in  equation (1 l), the 
probability of correct  classification for each  category  is  larger  than 80%. When all classes 
are  used  together,  the  probability  drops  to  43%  (average  B-distance  of 0.40). This result 
indicates,  that  even  though  the JERS-1 mean backscatter  may  provide  acceptable 
classification  for  each  category  but  the  performance  is  poor  when  discriminating  all classes. 
In  particular,  our  analysis showed that  the  white sand vegetation  types  were  all confused 
with  forest or savanna types. Table 6 shows the  B-distance  computed  when  all classes are 
combined. The  most obvious results  are:  1) confusion of herbaceous  and shrubland 
inundated  vegetation  with  grassland savanna, 2) confusion the closed  woody savanna with 
open forest, 3) lack  of  separability  between  palm swamps and  terra  firme forest types or 
closed  and  open  inundated  vegetation, 4) confusion of seasonal forest with other forest 
types, 5 )  confusion of parkland  savanna with other class types, and 6) high confusion of 
white  sand  vegetation  types with savanna  and  forest class types. 

As a result of this analysis, we removed  the  white sand category, and  seasonal 
forest, and  combined  parkland  and  herbaceous savanna, and  palm swamp with open 
inundated forest, shrubland and  herbaceous  inundated  vegetation  from  the  classification 
procedure. Table 7 shows the  B-distance  among  14  land cover types  including the  water 

19 



class. The  average  B-distance  increased to 1.58 corresponding to approximately  85% 

accuracy in classification. 

6.2 Classification  Accuracy 
One  of  the  main issues in large  scale  land  cover  classification  is assessing the 

accuracy of  the results against  limited  and  often  unreliable  information  on  global  land 
cover. In  this study, we  have chosen  three  methods  to  validate  the  thematic  information 
extracted  from  the  classification of 1 km resolution  JERS-1  data. These methods are: 1) the 
accuracy of classification  algorithm as applied  to the training  and  test sites, 2) large  scale 
comparison of  the classification  against  the RADAM derived  map as a potential ground 
truth, and 3) comparison  with  the 1 km AVHRR global  land  cover  classification  recently 
produced  at  the  University of Maryland  and reported in  this issue (Hansen et al., 1998). 

The two stage classifier described  in  section 4.3 has  been used to classify the 1 km 
JERS-1  mosaic image for the  vegetation  types of  the  Amazon  basin.  Using a sample set of 
training  areas for forest, savanna, inundated  vegetation,  nonforest (deforested areas), and 
water,  first a classification map was  generated  from  the 1 km mean backscatter data. The 
MAP classifier  was  able  to  separate the 5 class types  with  approximately 75% accuracy 
when  used  on  the  training  and  test data sets. The results from section 6.1 indicate  that  once 
these  general classes are  identified,  the  radar  backscatter  and  texture measures can further 
segment  these classes into  their  subcategories. 

The second stage of classification  involved a hierarchical  decision rule method  by 
thresholding  the  mean  texture  measures  from  the  tables  given in section 6.1. The  decision 
rule  was  applied  to  14 classes. All decision  rules  start  with  the a priori vegetation  map 
derived  from the  mean backscatter  in the first  stage  and subdivides the  categories  to sub 
categories. The flowchart  in figure 5 shows the decision  rule  flow for further classifying 
the 5 classes to 14 subcategorizes. In  this figure, we  have shown only the  name  of  the 
texture  measures  used for identifying  each class type. The  numerical  values  used  in  the 
decision  rule  are  extracted  from  tables  2a-5a by considering  the  mean  and  standard 
deviation of each  quantity  over  the  training  sites. 

The classification  map of  the 1 km image  mosaic  is  given in figure 6. The  accuracy 
of classification  is  given in terms of confusion  matrix in Table 8. The  accuracy  is 
calculated by  the number of training  sites  correctly classified. Since the  training  sites  are 
obtained  from  the  100  meter JERS-1 data, each  represent  one  pixel in the 1 km data map. 
Even though, this does not  represent the  overall  accuracy  of  the  map, however, it shows 
the  performance  of  the classification  methodology.  The  accuracy  according  to  the  confusion 
matrix in table 8 is 78%. Majority  of  misclassified  sites are those  that  had  lower 
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separability with other classes in the  B-distance matrix shown in table 7. Among  the  open 
forest  sites that are  taken  from  liana  and  bamboo  forests in the  southwest of  the  basin 7 are 
classified  correctly  and the  rest  are  identified as dense forest, secondary forest, and  closed 
canopy  woody savanna. Montane  forests  are  identified  correctly (90% accuracy), 
indicating  that  texture  measures  are  capable of separating cover types  that  are  often 
misclassified in backscatter  data  due to  the topography effects. The errors in woody 
savanna classes are  higher  than  the  forest  types  because of often  the  loose  definition  of 
woody  savanna classes in RADAM map (biomass density of woody  savanna  is  not 
explicitly  quantified). 

6.3 Comparison with RADAM derived vegetation map 

The comparison with  the RADAM map  is  performed  visually for assessing the 
general  patterns of land cover types. Because of the  scale  difference  between two maps, 
the  pixel  to  pixel comparison as a result of  map registeration  introduces  resampling error. 
Overall, two  maps  show similar patterns of land cover types. 

The  general  patterns  of  open forests in the  Eastern  part of the  basin  are identified. 
However, they are confused with dense, the  montane forests. In  the  south  western  part  of 
the  basin  in  the state of Acre, Brazil, Peru  and  Bolivia,  the  liana and bamboo forests mixed 
with  evergreen forests are identified  correctly as the  open forest. These  areas of open 
forest generally  agree  with  areas of  liana  and  bamboo forests as shown in  Nelson (1994) 
results. In  the  Northeastern Brazil, most classes are  identified as montane forests, mixed 
with some open forests in French Guiana, Surinam, and Guyana. Since the RADAM map 
does  not  identify  any  open forests in  the region, we are not  certain  about  the  accuracy  of  the 
classification in this area. The  montane forests in JERS-1 result does not follow the 
characteristics of montane forests in RADAM map.  In JERS-1 map  areas  with  lower  than 
600 m altitude  are also identified  as  montane  forests  because of the  effect of topography  on 
variance  and contrast texture  measures. 

According to the confusion matrix  in  table 8, anthropogenic classes such as 
deforested  areas and the  secondary forests are  identified with 70% accuracy. Comaprison 
with RADAM map shows that  the  confusion is between  grazing  pasture in Rondonia  and 
Para states in Brazil with grassland  savanna  and  open forests respectively. At 1 km scale, 
most  deforested areas and secondary forests  appear in subpixel  scale  and thus easily 
misclassified. However, the  general  location  and  patterns of these classes match with the 
RADAM land cover map  and our general  knowledge of  the occurance of these classes in 
regions  under  intense  land  use  change  and  deforestation. 
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In the savanna category, all subcategory  training  sites  are  identified with high 
accuracy. However, in comparison with the RADAM map, the patterns do not always 
coincide. According to Veloso (1991) the savanna  subcategories  are  defined  based on  the 
amount of the woody  vegetation.  Since  the  density of trees in each  pixel  can  impact  the 
SAR  backscatter  and  texture,  the  misclassification of general  patterns may  have  been 
caused by the loose  definition of subcategories. Moreover, the RADAM map  was 
generated  from  the  visual  interpretation  of  RADAMBRASIl  airborne  radar survey, 
operating at X-band. At X-band  the  radar  return  saturates  at  lower  woody  biomass  than 
JERS-1 L-band radar, and  thus  maps the landscape  patterns  differently. This is particularly 
true  when separating the  parkland  savanna  from  grasslands  and  open woodlands. 

The  classification shows a high  performance over inundated  land cover types. 
Even though, the JERS-1 images  were  acquired  during  the  low  water season, the  texture 
measures  were  able to identify  most  inundated or floodplain  vegetation  along  the  Amazon 
river  and its tributaries. The  confusion is mainly  in separating  the  coastal  herbaceous 
vegetation  from  inland  herbaceous  and shrubs. The  open  and  closed  inundated  vegetation 
also show  some  degree of misclassification  primarily due to  the radar response to the 
underlying  water level. The  subcategories of  the inundated  vegetation  are  often  most 
difficult  to  identify  because of their  temporal  characteristic of class types. For example, the 
areas  along  the  Eastern coast, and  the  Maraju  island  show  slightly  different  patterns  as 
compared to the  RADAM  map.  The  areas of herbaceous  swamps  are  mixed  with  grassland 
savanna. The marshland and  low  vegetated swamps are  better  discriminated  when  higher 
frequency  radar channels are  added.  For example, C-band data  acquired during the SIR-C 
(Shuttle  Imaging Radar C) showed high  sensitivity  to  herbaceous  inundated  vegetation 
(Hess et al., 1995). Note  that  one of  the  main sources of error between two maps is in 
areas  along  the edges of land  cover  types  and  their  general  landscape patterns. This is 
often  true  when  comparing  large  scale  maps  derived from two  different sources such  as 
remote sensing instruments or aireal  photopgraphy  because  each instrument’s signal 
responds  differently to the  surface  or  vegetation characteristics. 

6.3 Comparison with AVHRR Based lkm Map 
A comparison of our map with the  latest AVHRR based 1 km vegetation  map 

would  thoroughly  verify the  classification  and  reveal  information  which  can  be  used for 
future  synergism  and  fusion of optical  and  microwave  remote sensing data and techniques. 
For  comparison, we have  used  the  land cover classification  based on lkm AVHRR  data for 
1992-93 reported in the current issue  (Hansen  et al., 1998). This AVHRR classification  is 
based  on a “continuous fields”  approach  of  vegetation  properties  which  includes  gradients 
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and  hetrogeneities of vegetated  land  surface. A linear  mixture  model  is  applied on monthly 
averaged NDVI data in order to estimate  proportional  cover for three  important  vegetation 
characteristics: life  form (present  woody  vegetation,  herbaceous  vegetation,  and  bare 
ground), leaf  type (percent  needleleaf  and broadleaf), and  leaf  duration  (percent  evergreen 
and deciduous). The  classified  vegetation  map  has all 17 classes of IGBP (International 
Geosphere Biosphere  Project)  legend.  Figure 7 shows the  AVHRR 1 km land cover map 
of the Amazon  basin with fifteen  classes as a result  of  merging  two low vegetation classes 
in the  global  map.  The  classification  is  designed for global  land cover types and therefore  it 
does not  include or necessarily corresponds with the  usual  land cover types  used in the 
JERS-1 or RADAM map  of  the  Amazon basin. However, by merging cover types  and 
interpreting  the  difference in terminology  used in each map, one  can  compare  two  images 
for general  land cover types. 

To start with, we  resampled  and  co-registered  the JERS-1 map  with  the AVHRR 
map. By  comparing  only forest, savanna herbaceous, woody savanna, deforested, 
floodplain  vegetation,  and  open water, we  were  able  perform a comparison on a pixel  to 
pixel basis. The  merged classes between  the  two  maps are shown in table 9. The  area 
covered by  each class in  either  AVHRR or JERS-1 maps  and  the  difference  between  the 
surface areas  covered by each class in  the  maps are shown  in  table 10. In order to  exclude 
the  areas of  Andes  and  to focus on the areas  with  the  least  topographical effects, we 
extracted  an  area  of 2000 km by 2000 km in the  middle  of maps. Overall, .the agreement 
between  two  forest  cover  types  was  close to 95% of  the  entire forested areas. The 
herbaceous  savanna  has  larger surface area in AVHRR  image  than  in JERS-1. Visually 
most  savanna  areas  are  classified  similarly in  both images. The  main  difference is due  to 
the  herbaceous  floodplains  class  along  the  main  channels of the  Amazon  in  the JERS-1 map 
and the savanna in AVHRR map. This difference is also seen  when  comparing  the 
floodplain  vegetation. The inundated  areas  are  better  distinguished  in JERS-1 data  and  thus 
covering more  surface area. AVHRR  map  has  the  permanent  wetland class that  often  refers 
to  areas of open conopy. Comparison with the RADAM map  in figure 3 indicates  that  the 
AVHRR  map does not  separate  the  closed  canopy  woody  savanna  from  the  evergreen 
broadleaf  forest  accurately. This may  partially  be due to  the  fact  the  classification  was 
designed for a global  land cover map  and  not for the  Amazon  basin  specifically. 
Comparing the areas of open forests and  secondary  vegetation in AVHRR  map  with  the 
RADAM map also  indicates  that  these  cover  types  are  classified  as  evergreen forests. In 
particular, in  the  province of Para in northeast of  Brazil where a large  portion of  the forest 
is either intensely degraded or as  secondary forests, the  AVHRR  map is  not correct. Other 
vegetation  maps  based  on  the  AVHRR  data  that  are  designed for the South American 
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vegetation  types  show  better  distinction  among classes and  more suitable  for  comparison 
with the JERS-1 data (Stone et al., 1994). 

Note that one of the  main distinction  between  the  two  maps  is  the  better  delineation 
of  land cover types in JERS- 1 map.  For example, the  deforested areas have 13% difference 
which  are  mainly  due  to  the  finer  distinction of  the edges and  boundaries of  this  class in 
JERS-1 map. This is  primarily  due to  the  fact  that  the 1 km JERS-1 mosaic  map  was 
generated  from  aggregating a finer resolution  image  data (100 m).  The  same  result  can be 
achieved if a finer resolution  optical  data  such  as  Landsat  were  used  in  generating  the 1 km 
map (DeFries and Thownshend, 1994). 

7. Concluding Remarks 

In  this paper, we  have  demonstrated  that  single  channel  high  resolution  radar  data 
can  successfully  be used for regional  scale  mapping  of  land  cover types. The  data  were 
acquired  in a short period over the  Amazon  basin  where  cloud  cover and changes of land 
cover and/or  land  use  can  hinder  the  use of other  high  resolution  data sets such as  Landsat 
imagery. Our  main  objective  was  to  develop a methodology  that  can  produce  thematic 
information from radar remote sensing in a repeatable fashion. The use of  texture 
measures  augments  the  single  channel  radar data by addmg  the  statistical  information  about 
the  signal  that  can  be  readily  used  in  any  standard  classification algorithm. In this study, 
we  have shown that a two stage classifier  based  on a maximum  likelihood  technique  and 
decision  rule  can  provide  detailed  information  about  the  land cover types. As inpui- 
parameters to the  classifier such as  more  radar  channels (e.g. other frequencies, 
polarizations,  and  higher order texture  features) increases, the  classification  accuracy  and 
number of land cover types can increase. 

The acquisition, processing, calibration, mosaicking, resampling, and  classification 
of more  than 1500 JERS-1 images  have  produced a 1 km map of the  Amazon  basin  with 14 
land cover types. The accuracy of classification  is  approximately 78%. Starting  with  20 
class types  from a more  detailed  map of RADAM, we  have shown  that  the JERS-1 data 
from the dry  season  can  separate  Amazonian  cover  types  based  on  their structure, biomass, 
and  moisture condition. The class types  were  chosen  according  to  the  needs of mapping 
dominant  vegetation  types  and  the  sensitivity  and  dynamic  range of the JERS-1 data. In  the 
case of inundated  vegetation,  the  same  image  mosaic  from the  wet season will improve  the 
classification  accuracy. 
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The  classification  methodology in this  paper  was  aimed  to  demonstrate  both  the 
capability  and  insensitivity of the JERS-I data  and  the  texture  measures to map a desired  set 
of land  cover  types in the  Amazon basin.  For example, the  white sand herbaceous  and 
woody  vegetation  can  not be directly  mapped by radar images. This  result suggests that the 
synergism of radar data and  other  remote  sensing  insturments  that are sensitive to soil  type. 
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Figure Captions: 

Figure I .  The JERS- 1 low water coverage of the  Amazon  basin in 1995. 

Figure 2. JERS-1 radar  backscatter  mosaic  image of the  Amazon  basin. The mosaic  is 
developed using 1500 JERS-1 images  at 100 m resolution. 

Figure 3. IBGE  vegetation  classification  of  Brazilian  Amazon  based  on  the 
RADAMBRASIL  project (IBGE, 1997). Several vegetation  types are merged 

in order to create a map  with  less  classes and suitable for examining the 
statistical  characteristics of JERS-1 data. The land covert  type  legend is given  in 
table 1.  

Figure 4. The  separability of land cover type categories in  terms of B-distance as  computed 
by increasing the number of texture measures. 

Figure 5. Flow of textuyre  decision  rule for the second stage of the classifier. The 
acronyms for texture  measures  and classes are given  in  the caption of Table 2a 
and 6 respectively. Four intermediate class types  are introduced ini this flow: 
sav-w (woody savanna), sav-nw (non-woody savanna), fld-ft (floodplain 
forest), ft-txt (textured forest). 

Figure 6. Map of land cover types of  the  Amazon  basin  obtained from JERS-1 mosaic  and 
texture  measures. The map  includes 14 classes which are idensitified in  the 
figure legend. 

Figure 7. AVHRR  based 1 km land  ocver  types of the  Amazon  basin, extracted from  the 
the  global  land cover map. 

Table 1 .  Land cover type  legend  for  the  RADAM  map of figure 2. 
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